求高中数学概率所有公式 高中数学常用公式

facai369 生活热点 2023-12-23 1032 0
问题描述 求高中数学概率所有公式

推荐答案

         概率的加法:如果事件A与事件B为互斥事件,那么事件A+B发生的概率等于事件A、B分别发生的概率的和。


即P(A+B)=P(A)+p(B)


      概率的乘法:若事件 A、B互相独立,则事件AB发生的概率等于每个事件A、B发生概率的积。


即P(A*B)=p(A)*p(B)


p(A1*A2*A3*…An)=p(A1)*P(A2)*p(A3)*…p(An)

其他回答

高中数学常用公式

高中数学常用公式有复数、函数、空间几何体等。

1、复数。

复数,是数的概念扩展。我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

2、函数。

函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

3、空间几何体。

在我们周围存在着各种各样的物体,它们都占据着空间的一部分。如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

高中数学公式大全

高中数学必备公式定理如下:

概念与符号:

函数的概念。

一般地,我们有:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作:y=f(x),x∈A。

映射的概念。

一般地,我们有:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射(mapping)。

函数的最值。

一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x EI,都有f(x)≤M(f(x)≥M)。

(2)存在xo∈1,使得f(xo)=M。

那么称M是函数y=f(x)的最大(小)值,通常记为:

ymax = M或f(x)max = M(ymin = M或f(x)min=M)。

奇偶函数等式的等价形式:

奇函数f(-x)=-f(ox)f(-x)+f(x)=0。

f(-x)/fx=-1(f(x)≠0(x)。

偶函数f(-x)=f(x)=f(-x)-f(x)=0。

f(-x)/fx=1(f(x)≠0(x)。

常用公式。

对数恒等式:

函数应用:

常用公式:

常用定理:

零点存在定理:

一般地,我们有:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在cE(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

二分法的操作步骤:

给出精确度e,用二分法求函数f(x)在区间[a,b]上零点近似值的步骤如下:

(1)确定区间[a,b],验证f(a).f(b)<0,给定精确度e。

(2)求区间(a,b)的中点c。

(3)计算f(c)。

①若f(c)=0,则c就是函数的零点。

②若f(a).f(c)<0,则令b =c(此时零点xo∈(a,c))。

③若f(c).f(b)<0,则令a=c(此时零点xo∈(c,b))。

高中数学所有公式

1、集合与常用逻辑用语

2、 复数

3、 平面向量

4、 算法、推理与证明

5、不等式、线性规划

6、 计数原理与二项式定理

7、 函数、基本初等函数的图像与性质

8、函数与方程、函数模型及其应用

9、导数及其应用

10、三角函数的图形与性质

11、三角恒等变化与解三角形

12、等差数列、等比数列

13、数列求和及数列的简单应用

14、空间几何体

15、空间点、直线、平面位置关系

16、空间向量与立体几何

17、直线与圆的方程

18、圆锥曲线的定义、方程与性质

参考资料:

百度-2020高中数学必备公式大全

学好数学的第一步是“记住并深刻理解公式”,这样在做题时才会有货,以下是高中数学所有公式:

都是些最基础的东西,学习好的同学可以看看自己有哪些点自己没掌握好,基础不好的同学可以尝试把它抄下来,在学习过程中,没事的时候拿出来翻翻看,绝对对你大有帮助。

1、适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。??

2、函数的周期性问题(记忆三个):

(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限;b.周期函数未必存在最小周期,如:常数函数;c.周期函数加周期函数未必是周期函数。

3、关于对称问题(无数人搞不懂的问题)总结如下:

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4、函数奇偶性:

(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;(3)奇偶性作用不大,一般用于选择填空。

5、常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个2。

6、适用于标准方程(焦点在x轴)公式:

k椭=-{(b?)x?}/{(a?)y?};k双={(b?)x?}/{(a?)y?};k抛=p/y?。注:(x?,y?)均为直线过圆锥曲线所截段的中点。

7、强烈推荐一个两直线垂直或平行的必杀技:

已知直线L?:a?x+b?y+c?=0?;直线L?:a?x+b?y+c?=0

若它们垂直:(充要条件)a?a?+b?b?=0;若它们平行:(充要条件)a?b?=a?b?且a?c?≠a?c?[这个条件为了防止两直线重合]

8、积化和差:

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

分享:

扫一扫在手机阅读、分享本文

最近发表

  • 如何选择最适合你的最佳浏览器
  • 掌握这款强大浏览器的奥秘
  • 您身边的健康守护神
  • 机遇与挑战
  • 神奇的中草药及其多重功效
  • 补肾壮阳,健康生活的强心剂——国药准字补肾壮阳药
  • 一本古老医学典籍的现代下载之旅
  • 安全上网的新选择
  • 中草药图谱大全
  • 守护健康,从这里开始
  • 打造高效便捷的网络体验
  • 如何高效利用书生阅读器进行电子文档管理和学习
  • 神奇植物的药用价值与栽培技巧
  • 如何通过局域网共享管理软件让家庭网络更加高效与安全
  • 为您的健康导航
  • 为健康保驾护航的专业力量
  • 掌握用户交互的关键
  • 数字世界的信任基石
  • 如何充分利用谷歌浏览器的强大功能
  • 一步步指南
  • 全面了解与高效利用指南
  • 维持生命的秘密花园
  • 如何使用PS轻松制作个性化印章
  • 科学与实践的完美融合
  • 让网页编辑更高效
  • 让你的工作与生活更加高效
  • 为您的健康保驾护航
  • 如何巧妙管理QQ单向好友关系
  • 保护你的网络世界
  • 守护肠胃健康的秘密武器
  • 全面了解CPU监控
  • 电脑优化软件的魔力
  • 如何利用糯米网团购电影票享受优惠观影体验
  • 缓解疼痛与舒缓身心的神奇良药
  • 轻松掌握动图创作技巧
  • 如何合法获取并使用激活码
  • 如何通过药物与饮食有效治疗
  • 如何高效下载资源?掌握迅雷浏览器下载的奥秘
  • 类风湿新药带来的革命性突破
  • 合理使用与注意事项
  • 如何解决新浪邮箱无法登陆的问题
  • 拉肚子时如何正确选择药物与调理
  • 品牌与性能解析
  • 如何选择适合家庭使用的无线路由器品牌
  • 安全观影的贴心助手
  • 为何读卡器没反应?
  • 合理饮食与护理
  • 网络冲浪的理想选择
  • 打造个性化桌面体验的艺术
  • 个性化体验指南