推荐答案
你好,高一数学一共有四本数学书,分别是《高中数学必修一》、《高中数学必修二》、《高中数学必修三》、《高中数学必修四》。
1、《高中数学必修一》:是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。
2、《高中数学必修二》:是2007年9月由人民教育出版社出版的图书,作者是王申怀。该书主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。
3、《高中数学必修三》:是新课标高中数学必修系列的第3本书籍,分为A、B两版,由人民教育出版社出版发行。本书主要内容是对算法,统计,概率知识的讲解与总结。
4、《高中数学必修四》:数学4(必修)的内容包括三角函数、平面向量、三角恒等变换。三角函数是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。这是学生在高中阶段学习的最后一个基本初等函数。
其他回答
高一数学必修一第一章知识点梳理#高一# 导语提高学习成绩的过程就是发现,提出并解决疑问的过程。 无 为各位同学整理了《高一数学必修一第一章知识点梳理》,希望对你的学习有所帮助!
1.高一数学必修一第一章知识点梳理 篇一
函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称。
2.高一数学必修一第一章知识点梳理 篇二
映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)?B(象)”
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
3.高一数学必修一第一章知识点梳理 篇三
函数的奇偶性
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
注意:
1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
4.高一数学必修一第一章知识点梳理 篇四
求函数值域的方法
①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;
②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;
③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;
④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);
⑤单调性法:利用函数的单调性求值域;
⑥图象法:二次函数必画草图求其值域;
⑦利用对号函数
⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数
5.高一数学必修一第一章知识点梳理 篇五
多面体的结构特征
(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。
6.高一数学必修一第一章知识点梳理 篇六
函数模型及其应用
本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:
(1)阅读并且理解题意.(关键是数据、字母的实际意义);
(2)设量建模;
(3)求解函数模型;
(4)简要回答实际问题。
常见考法:
本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
高一数学必修一知识点整理大全
想了解高一数学知识,学习巩固数学的小伙伴,赶紧过来瞧一瞧。下面由我为你精心准备了“高一数学必修一知识点梳理”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!
高一数学必修一知识点梳理1.函数的奇偶性。
(1)若f(x)是偶函数,那么f(x)=f(-x)。
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。
2.复合函数的有关问题。
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定。
3.函数图像(或方程曲线的对称性)。
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然。
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。
4.函数的周期性。
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数。
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数。
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数。
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。
5.判断对应是否为映射时,抓住两点。
(1)A中元素必须都有象且唯一。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
7.对于反函数,应掌握以下一些结论。
(1)定义域上的单调函数必有反函数。
(2)奇函数的反函数也是奇函数。
(3)定义域为非单元素集的偶函数不存在反函数。
(4)周期函数不存在反函数。
(5)互为反函数的两个函数具有相同的单调性。
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
8.处理二次函数的问题勿忘数形结合。
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。
9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。
10.恒成立问题的处理方法。
(1)分离参数法。
? ? ? ?(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:学习数学的方法1.树立学好高中数学的信心。
进入高中就必须树立正确的学习目标和远大的理想。激励自己积极思考,勇于进取,培养学习数学的兴趣,树立学好数学的信心。
2.先看笔记后做作业。
有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
3.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
4.主动复习总结提高。
进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
5.积累资料随时整理。
要注意积累复习资料。把课堂笔记,练习,单元测试,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
6.跳出永无止境的题海。
省下时间,把精力花在研究精题上。最大限度地利用两大类精题:一类是涵盖了多项考点的母题,一类是同一题型中自己频率较高的错题。
7.总结数学规律。
数学并不难,其实就是按规律做题而已。道理很简单,因为出题的人就是按规律出题的。所以说只要掌握了规律,就不用怕了,关键就在于找规律。同一类型的题目,这次错了,总结出规律来下次就会做了。规律越来越多,就像有更多的钥匙,面对各种各样的锁,也就不怕了。别人给你总结好了,你要再总结一次,这样,它才能成为你的,我们的数学就建立在以前数学家总结的规律上。
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我给大家带来的 高一数学 必修一知识点整理大全,以供大家参考!
高一数学必修一知识点整理大全
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的 篮球 队员},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}
2.集合的表示 方法 :列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-11}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?BB?C那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
高中数学知识点 总结
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=2×2×7
几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、 ?
3的倍数有3、6、9、12、15、18 ? 其中6、12、18?是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
高一数学知识点总结
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);
8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
数学必修一知识点整理
集合与函数概念
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-3>2},{x|x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
函数的应用
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学必修一知识点整理大全相关 文章 :
★ 高中数学必修1知识点总结
★ 高一数学必修一知识点归纳
★ 高一数学必修一知识点汇总
★ 高一数学知识点汇总大全
★ 高中数学高一数学必修一知识点
★ 高一数学必修一知识点总结归纳
★ 高中数学必修一知识点总结
★ 高一数学必修1知识点归纳
★ 高一数学必修一知识点总结
★ 高一数学必修一集合知识点归纳
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();版权声明
本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。